Chapter 5

Design Fundamentals

Concepts:

> Asymptotic analysis and big-O notation
> Time-space trade-off

> Back-of-the-envelope estimations

> Recursion and Induction

We shape clay into a pot,

but it is the emptiness inside
that holds whatever we want.
—Lao Tzu

PROGRAMMERS ARE CRAFTSMEN. Their medium—their programming language—
often favors no particular design and pushes for an individual and artistic de-

cision. Given the task of implementing a simple program, any two individuals

are likely to make different decisions about their work. Because modern lan-

guages allow programmers a great deal of expression, implementations of data

structures reflect considerable personal choice.

Some aspects of writing programs are, of course, taught and learned. For
example, everyone agrees that commenting code is good. Programmers should
write small and easily understood procedures. Other aspects of the design of
programs, however, are only appreciated after considerable design experience.
In fact, computer science as a whole has only recently developed tools for un-
derstanding what it means to say that an algorithm is “implemented nicely,” or
that a data structure “works efficiently.” Since many data structures are quite
subtle, it is important to develop a rich set of tools for developing and analyzing
their performance.

In this chapter, we consider several important conceptual tools. Big-O com-
plexity analysis provides a means of classifying the growth of functions and,
therefore, the performance of the structures they describe. The concepts of
recursion and self-reference make it possible to concisely code solutions to com-
plex problems, and mathematical induction helps us demonstrate the important
properties—including trends in performance—of traditional data structures. Fi-
nally, notions of symmetry and friction help us understand how to design data
structures so that they have a reasonable look and feel.

5.1 Asymptotic Analysis Tools

We might be satisfied with evaluating the performance or complexity of data
structures by precisely counting the number of statements executed or objects

82

Design Fundamentals

Nails = proofs.

referenced. Yet, modern architectures may have execution speeds that vary as
much as a factor of 10 or more. The accurate counting of any specific kind of
operation alone does not give us much information about the actual running
time of a specific implementation. Thus, while detailed accounting can be use-
ful for understanding the fine distinctions between similar implementations, it
is not generally necessary to make such detailed analyses of behavior. Distinc-
tions between structures and algorithms, however, can often be identified by
observing patterns of performance over a wide variety of problems.

5.1.1 Time and Space Complexity

What concerns the designer most are trends suggested by the various perfor-
mance metrics as the problem size increases. Clearly, an algorithm that takes
time proportional to the problem size degrades more slowly than algorithms
that decay quadratically. Likewise, it is convenient to agree that any algorithm
that takes time bounded by a polynomial in the problem size, is better than
one that takes exponential time. Each of these rough characterizations—linear,
quadratic, and so on—identifies a class of functions with similar growth behav-
ior. To give us a better grasp on these classifications, we use asymptotic or big-O
analysis to help us to describe and evaluate a function’s growth.

Definition 5.1 A function f(n) is O(g(n)) (read “order g” or “big-O of g”), if and
only if there exist two positive constants, ¢ and ng, such that

|f(n)| < c-g(n)
for all n > ny.

In this text, f will usually be a function of problem size that describes the utiliza-
tion of some precious resource (e.g., time or space). This is a subtle definition
(and one that is often stated incorrectly), so we carefully consider why each of
the parts of the definition is necessary.

Most importantly, we would like to think of g(n) as being proportional to an
upper bound for f(n) (see Figure[5.1). After some point, f(n) does not exceed
an “appropriately scaled” g(n). The selection of an appropriate ¢ allows us to
enlarge g(n) to the extent necessary to develop an upper bound. So, while g(n)
may not directly exceed f(n), it might if it is multiplied by a constant larger
than 1. If so, we would be happy to say that f(n) has a trend that is no worse
than that of g(n). You will note that if f(n) is O(g(n)), it is also O(10- g(n)) and
O(5 + g(n)). Note, also, that c is positive. Generally we will attempt to bound
f(n) by positive functions.

Second, we are looking for long-term behavior. Since the most dramatic
growth in functions is most evident for large values, we are happy to ignore
“glitches” and anomalous behavior up to a certain point. That point is ng. We
do not care how big ng must be, as long as it can be nailed down to some fixed
value when relating specific functions f and g.

5.1 Asymptotic Analysis Tools

83

I\ a(n) I\

f
f(n) ® g(n)

g(n)

f(n)

Figure 5.1 Examples of functions, f(n), that are O(g(n)).

Third, we are not usually interested in whether the function f(n) is negative
or positive; we are just interested in the magnitude of its growth. In reality, most
of the resources we consider (e.g., time and space) are measured as positive
values and larger quantities of the resource are consumed as the problem grows
in size; growth is usually positive.

Most functions we encounter fall into one of a few categories. A function
that is bounded above by a constant is classified as O(l)E] The constant factor
can be completely accounted for in the value of ¢ in Definition[5.1] These func-
tions measure size-independent characteristics of data structures. For example,
the time it takes to assign a value to an arbitrary element of an array of size n
is constant.

When a function grows proportionately to problem size, or linearly, we ob-
serve it is O(n). Depending on what'’s being measured, this can be classified as
“nice behavior.” Summing the values in an n-element array, for example, can be
accomplished in linear time. If we double the size of the array, we expect the
time of the summation process to grow proportionately. Similarly, the Vector
takes linear space. Most methods associated with the Vector class, if not con-
stant, are linear in time and space. If we develop methods that manipulate
the n elements of a Vector of numbers in superlinear time—faster than linear
growth—we’re not pleased, as we know it can be accomplished more efficiently.

Other functions grow polynomially and are O(n°), where ¢ is some constant
greater than 1. The function n? + n is O(n?) (let ¢ = 2 and ny = 1) and
therefore grows as a quadratic. Many simple methods for sorting n elements of
an array are quadratic. The space required to store a square matrix of size n
takes quadratic space. Usually, we consider functions with polynomial growth
to be fairly efficient, though we would like to see ¢ remain small in practice.
Because a function n~! is O(n - n°~1) (i.e., O(n)), we only need consider the
growth of the most significant term of a polynomial function. (It is, after all,
most significant!) The less significant terms are ultimately outstripped by the
leading term.

1 It is also O(13), but we try to avoid such distractions.

What’s your
best guess for
the time to
assign a value?

—L_ second?

100
2
1000000 Sec. s

oS, ?
1000000000

Grass could be
greener.

Design Fundamentals

5
// /n! / n log(n)
/ /
/ / n
4 / /
/l / /
/
3 // / /
2n ///n2 7
2 / ’ s o
V2 / s S
~ / ‘//"/’//
! 7 log(n)
/ aw
, ~ /’
0= -
0 1 2 3 4 5

Figure 5.2 Near-origin details of common curves. Compare with Figure

100[[0’
80
60| |
w|

20| |

Figure 5.3 Long-range trends of common curves. Compare with Figure [5.2

5.1 Asymptotic Analysis Tools

85

Some functions experience exponential growth (see Figures and [5.3).
The functions are O(c™), where ¢ is a constant greater than 1. Enumerating
all strings of length n or checking topological equivalence of circuits with n
devices are classic examples of exponential algorithms. Constructing a list of
the n-digit palindromes requires exponential time and space. The demands of
an exponential process grow too quickly to make effective use of resources.
As a result, we often think of functions with exponential behavior as being
intractable. In the next section we will see that some recursive solutions to
problems are exponential. While these solutions are not directly useful, simple
insights can sometimes make these algorithms efficient.

5.1.2 Examples
A “Difference Table”

Suppose we're interested in printing a 10 by 10 table of differences between
two integers (row-col) values. Each value in the table corresponds to the result
of subtracting the row number from the column number:

-1 -2 -3-4-5-6-7-8-9
-1 -2-3-4-5-6-7-8
0-1-2-3-4-5-6-7
10-1-2-3-4-5-6

-1 -2 -3-4-5
0-1-2-3-4
10-1-2-3

210 -1-2
3210 -1
43210

O 00N O WN B+~ O
0 N O Ol WN - O
N O O W N

O U W N

g W NN = O

As with most programs that generate two-dimensional output, we consider the
use of a nested pair of loops:

public static void diffTable(int n)
// pre: n >= 0
// post: print difference table of width n

{
for (int row = 1; row <= n; rowt++) // 1
{
for (int col = 1; col <= n; col++) // 2
{
System.out.print(row-col+" "); // 3
}
System.out.println(); /] 4
}
}

Each of the loops executes n times. Since printing a value (line 3) takes constant
time cy, the inner loop at line 2 takes c;n time. If line 4 takes constant time c,,

“2002”is a
palindrome.

Analysis

86

Design Fundamentals

then the outer loop at line 1 takes n(c;n+c) = ¢1n?+con time. This polynomial
is clearly O(n?) (take ¢ = ¢; + ¢ and ny = 1). Doubling the problem size
approximately quadruples the running time.

As a rule of thumb, each loop that performs n iterations multiplies the com-
plexity of each iteration by a factor of n. Nested loops multiply the complexity
of the most deeply nested code by another power of n. As we have seen, loops
doubly nested around a simple statement often consume quadratic time.

Since there are only three variables in our difference method, it takes con-
stant space—an amount of space that is independent of problem size.

A Multiplication Table

Unlike the difference operator, the multiplication operator is commutative, and
the multiplication table is symmetric. Therefore, when printing a multiplication
table of size n, only the “lower triangular” region is necessary:

4

69

8 12 16

10 15 20 25

12 18 24 30 36

14 21 28 35 42 49

16 24 32 40 48 56 64

18 27 36 45 54 63 72 81

10 20 30 40 50 60 70 80 90 100

W 00 ~NO Ul WN =

Here is a Java method to print the above table:

public static void multTable(int n)
// pre: n >= 0
// post: print multiplication table

{
for (int row = 1; row <= n; row++) // 1
{
for (int col = 1; col <= row; col++) // 2
{
System.out.print (rowkcol+" "); // 3
}
System.out.println(); // 4
}
}

Clearly, this table can be printed at least as fast as our difference table—it has
about half the entries—so it is, similarly, O(n?). Can this limit be improved? If
lines 3 and 4 take constant times ¢; and co, respectively, then the overall time is
approximately

cin(n+1 c c
L)-f—?’wz _ 7177‘2_’_(02_’_71)71

(ler+ca) + (2e1 +c2) +- -+ (ney + o) = 5 5 B

5.1 Asymptotic Analysis Tools

87

Clearly, no linear function will bound this function above, so the bound of O(n?)
is a good estimate. Notice that we have, essentially, used the fastest growing
term of the polynomial—n?2.

Notice that both of these programs print an “area” of values, each of which
can be computed in constant time. Thus, the growth rate of the function is the
growth rate of the area of the output—which is O(n?).

Building a Vector of Values

Often, it is useful to build a Vector containing specific values. For the purposes
of this problem, we will assume the values are integers between 0 and n —
1, inclusive. Our first (and best) attempt expands the Vector in the natural
manner:

public static Vector<Integer> buildVectorl(int n)
// pre: n >= 0
// post: construct a vector of size n of 1..n

{
Vector<Integer> v = new Vector<Integer>(n); // 1
for (int i = 0; i < n; i++) // 2
{
v.add(i); // 3
}
return v; // 4
}

We will assume (correctly) that lines 1 and 4 take constant time. The loop at
line 2, however, takes n times the length of time it takes to add a single element.
Review of that code will demonstrate that the addition of a new element to a
Vector takes constant time, provided expansion is not necessary. Thus, the total
running time is linear, O(n). Notice that the process of building this Vector
requires space that is linear as well. Clearly, if the method’s purpose is to spend
time initializing the elements of a Vector, it would be difficult for it to consume
space at a faster rate than time.
A slightly different approach is demonstrated by the following code:

public static Vector<Integer> buildVector2(int n)
// pre: n >= 0
// post: construct a vector of size n of 1..n

{
Vector<Integer> v = new Vector<Integer>(n); // 1
for (int i = 0; i < n; i++) // 2
{
v.add(0,1i); // 3
}
return v; // 4

88

Design Fundamentals

All the assumptions of buildVector1 hold here, except that the cost of inserting
a value at the beginning of a Vector is proportional to the Vector’s current
length. On the first insertion, it takes about 1 unit of time, on the second, 2
units, and so on. The analysis of this method, then, is similar to that of the
triangular multiplication table. Its running time is O(n?). Its space utilization,
however, remains linear.

Printing a Table of Factors

Suppose we are interested in storing a table of factors of numbers between 1
and n. The beginning of such a table—the factors of values between 1 and
10—includes the following values:

N e e =
[o0]

N W NN WN
w
]

a1 © B

10

How much space must be reserved for storing this table? This problem looks a
little daunting because the number of factors associated with each line varies,
but without any obvious pattern. Here’s a program that generates the desired
table:

public static Vector<Vector<Integer>> factTable(int n)

// pre: n > 0

// post: returns a table of factors of values 1 through n

{
Vector<Vector<Integer>> table = new Vector<Vector<Integer>>();
for (int 1 = 1; i <= n; i++)

{
Vector<Integer> factors = new Vector<Integer>();
for (int £ = 1; £ <= 1i; f++)
{
if (A% £) ==0) {
factors.add(f);
}
}
table.add(factors);
}

return table;

}

To measure the table size we consider those lines that mention f as a factor.
Clearly, f appears on every fth line. Thus, over n lines of the table there are

5.1 Asymptotic Analysis Tools

89

Figure 5.4 Estimating the sum of reciprocal values. Here, Zi:1 1~ 2.72 is no more
than 1+ [Ldz =1+ In8 ~ 3.08.

no more than ? lines that include f. Thus, we have as an upper bound on the

table size:
e i
1 2 3 n—1 n

Factoring out n we have:

L PPN
"\17273 n—1_"n

We note that these fractions fall on the curve 1 (see Figure . We may
compute the area of the curve—an upper bound on the sum—as:

"1 "1
I o< 1 z
OEERICIED
< n(l4+lnn—Inl)
< O(nlnn)

The size of the table grows only a little faster than linearly. The time necessary
to create the table, of course, is O(n?) since we check n factors for number n.

Exercise 5.1 Slightly modify the method to construct the same table, but in O(n+/n)
time.

Exercise 5.2 Rewrite the method to construct the same table, but in O(nlnn)
time.

90

Design Fundamentals

Finding a Space in a String

Some problems appear to have behavior that is more variable than the examples
we have seen so far. Consider, for example, the code to locate the first space in
a string:

static int findSpace(String s)
// pre: s is a string, possibly containing a space
// post: returns index of first space, or -1 if none found

{

int i;
for (i = 0; i < s.length(); i++)
{
if (° ’ == s.charAt(i)) return i;
}

return -1;

}

This simple method checks each of the characters within a string. When one
is found to be a space, the loop is terminated and the index is returned. If, of
course, there is no space within the string, this must be verified by checking
each character. Clearly, the time associated with this method is determined by
the number of loops executed by the method. As a result, the time taken is
linear in the length of the string.

We can, however, be more precise about its behavior using best-, worst-, and
average-case analyses:

Best case. The best-case behavior is an upper bound on the shortest time that
any problem of size n might take. Usually, best cases are associated with
particularly nice arrangements of values—here, perhaps, a string with a
space in the first position. In this case, our method takes at most constant
time! It is important to note that the best case must be a problem of size n.

Worst case. The worst-case behavior is the longest time that any problem of
size n might take. In our string-based procedure, our method will take
the longest when there is no space in the string. In that case, the method
consumes at most linear time. Unless we specify otherwise, we will use
the worst-case consumption of resources to determine the complexity.

Average case. The average-case behavior is the complexity of solving an “av-
erage” problem of size n. Analysis involves computing a weighted sum of
the cost (in time or space) of problems of size n. The weight of each prob-
lem is the probability that the problem would occur. If, in our example,
we knew (somehow) that there was exactly one space in the string, and
that it appears in any of the n positions with equal probability, we would
deduce that, on average,

2 2

1. 1 1 1 1 nn+1) n+1
—~n n n n n

5.1 Asymptotic Analysis Tools

91

iterations would be necessary to locate the space. Our method has linear
average-time complexity. If, however, we knew that the string was English
prose of length n, the average complexity would be related to the average
length of the first word, a value easily bounded above by a constant (say,
10). The weights of the first few terms would be large, while the weights
associated with a large number of iterations or more would be zero. The
average complexity would be constant. (In this case, the worst case would
be constant as well.) Obviously determining the average-case complexity
requires some understanding of the desired distributions of data.

Best-, worst-, and average-case analyses will be important in helping us eval-
uate the theoretical complexities of the structures we develop. Some care, how-
ever, must be used when determining the growth rates of real Java. It is tempt-
ing, for example, to measure the space or time used by a data structure and fit a
curve to it in hopes of getting a handle on its long-term growth. This approach
should be avoided, if possible, as such statements can rarely be made with much
security. Still, such techniques can be fruitfully used to verify that there is no
unexpected behavior.

5.1.3 The Trading of Time and Space

Two resources coveted by programmers are time and space. When programs
are run, the algorithms they incorporate and the data structures they utilize
work together to consume time. This time is directly due to executing machine
instructions. The fewer instructions executed, the faster the program goes.

Most of us have had an opportunity to return to old code and realize that
useless instructions can be removed. For example, when we compute the ta-
ble factors, we realized that we could speed up the process by checking fewer
values for divisibility. Arguably, most programs are susceptible to some of this
“instruction weeding,” or optimization. On the other hand, it is clear that there
must be a limit to the extent that an individual program can be improved. For
some equivalent program, the removal of any statement causes the program to
run incorrectly. This limit, in some sense, is an information theoretic limit: given
the approach of the algorithm and the design of a data structure, no improve-
ments can be made to the program to make it run faster. To be convinced that
there is a firm limit, we would require a formal proof that no operation could be
avoided. Such proofs can be difficult, especially without intimate knowledge of
the language, its compiler, and the architecture that supports the running code.
Nonetheless, the optimization of code is an important feature of making pro-
grams run quickly. Engineers put considerable effort into designing compilers
to make automated optimization decisions. Most compilers, for example, will
not generate instructions for dead code—statements that will never be executed.
In the following Java code, for example, it is clear that the “then” portion of this
code may be removed without fear:

German prose
may require
larger
constants.

92

Design Fundamentals

if (false)
{

System.out.println("Man in the moon.");
} else {

System.out.println("Pie in the sky.");
}

After compiler optimizations have been employed, though, there is a limit that
can be placed on how fast the code can be made to run. We will assume—
whenever we consider a time-space trade-off—that all reasonable efforts have
been made to optimize the time and space utilization of a particular approach.
Notice, however, that most optimizations performed by a compiler do not sig-
nificantly affect the asymptotic running time of an algorithm. At most, they tend
to speed up an algorithm by a constant factor, an amount that is easily absorbed
in any theoretical analysis using big-O methods.

Appropriately implemented data structures can, however, yield significant
performance improvements. Decisions about data structure design involve weigh-
ing—often using results of big-O analysis—the time and space requirements of
a structure used to solve a problem. For example, in the Vector class, we opted
to maintain a field, elementCount, that kept track of how many elements within
the underlying array are actually being used. This variable became necessary
when we realized that as the Vector expanded, the constant reallocation of the
underlying memory could lead to quadratic time complexity over the life of the
Vector. By storing a little more information (here, elementCount) we reduce
the total complexity of expanding the Vector—our implementation, recall, re-
quires O(1) data-copying operations as the Vector expands. Since Vectors are
very likely to expand in this way, we find it worthwhile to use this extra space.
In other situations we will see that the trade-offs are less obvious and sometimes
lead to the development of several implementations of a single data structure
designed for various uses by the application designer.

The choice between implementations is sometimes difficult and may require
analysis of the application: if Vector’s add method is to be called relatively in-
frequently, the time spent resizing the structure is relatively insignificant. On the
other hand, if elements are to be added frequently, maintaining elementCount
saves time. In any case, the careful analysis of trade-off between time and space
is an important part of good data structure design.

5.1.4 Back-of-the-Envelope Estimations

A skill that is useful to the designer is the ability to develop good estimates
of the time and space necessary to run an algorithm or program. It is one
thing to develop a theoretical analysis of an algorithm, but it is quite another to
develop a sense of the actual performance of a system. One useful technique is
to apply any of a number of back-of-the-envelope approximations to estimating
the performance of an algorithm.

The numbers that programmers work with on a day-to-day basis often vary
in magnitude so much that it is difficult to develop much of a common sense

5.1 Asymptotic Analysis Tools

93

for estimating things. It is useful, then, to keep a store of some simple figures
that may help you to determine the performance—either in time or space—of a
project. Here are some useful rules of thumb:

e Light travels one foot in a nanosecond (one billionth of a second).

e Approximately 7 (= 3.15) hundredths of a second is a nanoyear (one
billionth of a year).

o It takes between 1 and 10 nanoseconds (ns) to store a value in Java. Basic
math operations take a similar length of time.

e An array assignment is approximately twice as slow as a regular assign-
ment.

e A Vector assignment is approximately 50 times slower than a regular
assignment.

e Modern computers execute 1 billion instructions per second.
e A character is represented by 8 bits (approximately 10).

e An Ethernet network can transmit at 100 million bits per second (expected
throughput is nearer 10 million bits).

e Fewer than 100 words made up 50 percent of Shakespeare’s writing; they
have an average length of 7. A core of 3000 words makes up 90 percent
of his vocabulary; they have an average of 5.5 letters.

As an informal example of the process, we might attempt to answer the
question: How many books can we store on a 10 gigabyte hard drive? First
we will assume that 1 byte is used to store a character. Next, assuming that an
average word has about 5 characters, and that a typewritten page has about 500
words per typewritten page, we have about 2500 characters per page. Another
approximation might suggest 40 lines per page with 60 characters per line,
or 2400 characters per page. For computational simplicity, we keep the 2500
character estimate. Next, we assume the average book has, say, 300 pages, so
that the result is 0.75 million bytes required to store a text. Call it 1 million. A
10 gigabyte drive contains approximately 10 billion characters; this allows us
to store approximately 10 thousand books.

A dictionary is a collection of approximately 250,000 words. How long
might it take to compute the average length of words appearing in the dic-
tionary? Assume that the dictionary is stored in memory and that the length
of a word can be determined in constant time—perhaps 10 microseconds (us).
The length must be accumulated in a sum, taking an additional microsecond
per word—Ilet’s ignore that time. The entire summation process takes, then, 2.5
seconds of time. (On the author’s machine, it took 3.2 seconds.)

94

Design Fundamentals

Recursion

Exercise 5.3 How many dots can be printed on a single sheet of paper? Assume,
for example, your printer prints at 500 dots per inch. If a dot were used to represent
a bit of information, how much text could be encoded on one page?

As you gain experience designing data structures you will also develop a
sense of the commitments necessary to support a structure that takes O(n?)
space, or an algorithm that uses O(nlogn) time.

5.2 Self-Reference

One of the most elegant techniques for constructing algorithms, data structures,
and proofs is to utilize self-reference in the design. In this section we discuss ap-
plications of self-reference in programming—called recursion—and in proofs—
called proof by induction. In both cases the difficulties of solving the problem
outright are circumvented by developing a language that is rich enough to sup-
port the self-reference. The result is a compact technique for solving complex
problems.

5.2.1 Recursion

When faced with a difficult problem of computation or structure, often the best
solution can be specified in a self-referential or recursive manner. Usually, the dif-
ficulty of the problem is one of management of the resources that are to be used
by the program. Recursion helps us tackle the problem by focusing on reducing
the problem to one that is more manageable in size and then building up the
answer. Through multiple, nested, progressive applications of the algorithm, a
solution is constructed from the solutions of smaller problems.

Summing Integers

We first consider a simple, but classic, problem: suppose we are interested in
computing the sum of the numbers from 0 through n.

> i=0+1+2+3+--+n
=0

One approach to the problem is to write a simple loop that over n iterations
accumulates the result.

public static int sumi(int n)

// pre: n >= 0

// post: compute the sum of 0..n
{

int result
for (int i

{

0;
1; i <= n; i++)

5.2 Self-Reference

95

result = result + i;
}
return result;

}

The method starts by setting a partial sum to 0. If n is a value that is less than
1, then the loop will never execute. The result (0) is what we expect if n = 0. If
n is greater than 0, then the loop executes and the initial portion of the partial
sum is computed. After n — 1 loops, the sum of the first n — 1 terms is computed.
The nth iteration simply adds in n. When the loop is finished, result holds the
sum of values 1 through n. We see, then, that this method works as advertised
in the postcondition.

Suppose, now, that a second programmer is to solve the same problem. If
the programmer is particularly lazy and has access to the suml solution the
following code also solves the problem:

public static int sum2(int n)

// pre: n >= 0

// post: compute the sum of 0..n
{

if (n < 1) return O;
else return suml(n-1) + n;

}

For the most trivial problem (any number less than 1), we return 0. For all other
values of n, the programmer turns to suml to solve the next simplest problem
(the sum of integers 0 through n — 1) and then adds n. Of course, this algorithm
works as advertised in the postcondition, because it depends on sum1 for all but
the last step, and it then adds in the correct final addend, n.

Actually; if sum2 calls any method that is able to compute the sum of numbers
0 through n— 1, sum2 works correctly. But, wait! The sum of integers is precisely
what sum? is supposed to be computing! We use this observation to derive, then,
the following self-referential method:

public static int sum3(int n)
// pre: n >=0
// post: compute the sum of 0..n
{
if (n < 1) return 0; // base case
else return sum3(n-1) + n; // reduction, progress, solution

}

This code requires careful inspection (Figure[5.5). First, in the simplest or base
cases (for n < 1), sum3 returns 0. The second line is only executed when n > 1.
It reduces the problem to a simpler problem—the sum of integers between 0 and
n — 1. As with all recursive programs, this requires a little work (a subtraction)
to reduce the problem to one that is closer to the base case. Considering the
problem n + 1 would have been fatal because it doesn’t make suitable progress

96

Design Fundamentals

Vector

Compute sum3(1ogy =~
1. Compute sum3(99) Tl
2. Addin 100 N N Progre§
Work | 3. Return 1+ﬁQ * AR
+99+100 /Jmpute sum3(99): N
1. Compute sum3(98) .
2. Addin 99 N
3. Return 1+...+92+0 ' Basecase
>d * V
ompute sum3(98)
1. Compute sum3(97), |
2.Addin 98
3. Rewrn 1;"+98 Compute sum3(0):
Trivialy return O

Figure 5.5 The “unrolling” of a procedure to recursively sum integers. Rightward
arrows break the problem down; leftward arrows build up the solution.

toward the base case. The subproblem is passed off to another invocation of
sum3. Once that procedure computes its result (either immediately or, if nec-
essary, through further recursion), a little more work is necessary to convert
the solution of the problem of size n — 1 into a solution for a problem of size
n. Here, we have simply added in n. Notice the operation involved in build-
ing the answer (addition) opposes the operation used to reduce the problem
(subtraction). This is common in recursive procedures.

Principle 8 Recursive structures must make “progress” toward a “base case.”

We cast this principle in terms of “structures” because much of what we say
about self-referential execution of code can be applied to self-referential struc-
turing of data. Most difficulties with recursive structures (including recursive
methods) stem from either incorrectly stating the base case or failing to make
proper progress.

Inserting a Value into a Vector

Recursion is a natural method for accomplishing many complicated tasks on
Vectors and arrays. For example, the add (index,object) method of the Vector
class discussed on page [51| can be written as a recursive procedure. The essen-
tial concept is to insert the value into the Vector only after having moved the
previous value out of the way. That value is inserted at the next larger location.
This leads us to the following alternative to the standard Vector method:

5.2 Self-Reference

public void add(int index, E value)

// pre: O <= index <= size()

// post: inserts new value in vector with desired index
// moving elements from index to size()-1 to right

{
if (index >= size()) {
add(value); // base case: add at end
} else {
E previous = get(index); // work
add(index+1,previous); // progress through recursion
set (index,value); // work

Note that the base case is identified through the need to apply a trivial operation
rather than, say, the size of the index. Indeed, progress is determined by how
close the index gets to the size of the Vector. Again, this is a linear or O(n)
process.

Printing a Vector of Values

In the previous example, the recursive routine was suitable for direct use by
the user. Often, though, recursion demands additional parameters that encode,
in some way, progress made toward the solution. These parameters can be
confusing to users who, after all, are probably unaware of the details of the
recursion. To avoid this confusion, we “wrap” the call to a protected recursive
method in a public method. This hides the details of the initial recursive method
call. Here, we investigate a printing extension to the Vector class:

public void print()
// post: print the elements of the vector
{

printFrom(0) ;

protected void printFrom(int index)
// pre: index <= size()
// post: print elements indexed between index and size()
{
if (index < size()) {
System.out.println(get (index));
printFrom(index+1) ;

The print method wraps or hides the call to the recursive printFrom method.
The recursive method accepts a single parameter that indicates the index of
the first element that should be printed out. As progress is made, the initial

98

Design Fundamentals

Recursive-
Postage

index increases, leading to linear performance. To print the entire Vector, the
recursive method is called with a value of zero.

It would appear that the base case is missing. In fact, it is indicated by the
failure of the if statement. Even though the base case is to “do nothing,” the if
statement is absolutely necessary. Every terminating recursive method should
have some conditional statement.

PrintFrom is an example of a tail recursive method. Any recursion happens
just before exiting from the method. Tail recursive methods are particularly nice
because good compilers can translate them into loops. Each iteration of the loop
simulates the computation and return of another of the nested recursive proce-
dure calls. Since there is one call for each of the n values, and the procedure
performs a constant amount of work, the entire process takes O(n) time.

Exercise 5.4 Write a recursive method to print out the characters of a string with
spaces between characters. Make sure your method does not print a leading or
tailing space, unless it is a leading or trailing character of the original string.

Computing Change in Postage Stamps

Suppose, when receiving change at the post office, you wished to be paid your
change in various (useful) stamps. For example, at current rates, you might
be interested in receiving either 39 cent stamps, 24 cent postcards, or penny
stamps (just in case of a postage increase). For a particular amount, what is the
smallest number of stamps necessary to make the change?

This problem is fairly complex because, after all, the minimum number of
stamps needed to make 50 cents involves 4 stamps—two postcard stamps and
two penny stamps—and not 12—a 39 cent stamp and 11 penny stamps. (The
latter solution might be suggested by postal clerks used to dealing with U.S.
coinage, which is fairly easily minimized.) We will initially approach this prob-
lem using recursion. Our solution will only report the minimum number of
stamps returned. We leave it as an exercise to report the number of each type
of stamp (consider Problem [5.22)); that solution does not greatly change the
approach of the problem.

If no change is required—a base case—the solution is simple: hand the cus-
tomer zero stamps. If the change is anything more, we’ll have to do some work.
Consider the 70 cent problem. We know that some stamps will have to be given
to the customer, but not the variety. We do know that the last stamp handed to
the customer will either be a penny stamp, a 26 cent step, or a 41 cent stamp.
If we could only solve three smaller minimization problems—the 69 cent prob-
lem, the 34 cent problem, and the 29 cent problem—then our answer would
be one stamp more than the minimum of the answers to those three problems.
(The answers to the three problems are 4, 9, and 4, respectively, so our answer
should be 5.) Of course, we should ignore meaningless reduced problems: the
—6 cent problem results from considering handing a 26 cent stamp over to solve
the 20 cent problem.

Here is the stampCount method that computes the solution:

5.2 Self-Reference 99
public final static int LETTER=41;
public final static int CARD=26;
public final static int PENNY=1;
public static int stampCount(int amount)
// pre: amount >= 0
// post: return *number* of stamps needed to make change
// (only use letter, card, and penny stamps)
{
int minStamps;
Assert.pre(amount >= 0,"Reasonable amount of change.");
if (amount == 0) return O;
// consider use of a penny stamp
minStamps = l+stampCount (amount-PENNY) ;
// consider use of a post card stamp
if (amount >= CARD) {
int possible = 1+stampCount (amount-CARD) ;
if (minStamps > possible) minStamps = possible;
}
// consider use of a letter stamp
if (amount >= LETTER) {
int possible = l+stampCount (amount-LETTER) ;
if (minStamps > possible) minStamps = possible;
}
return minStamps;
}
For the nontrivial cases, the variable minStamps keeps track of the minimum
number of stamps returned by any of these three subproblems. Since each
method call potentially results in several recursive calls, the method is not tail
recursive. While it is possible to solve this problem using iteration, recursion
presents a very natural solution.
An Efficient Solution to the Postage Stamp Problem
If the same procedure were used to compute the minimum number of stamps Making
to make 70 cents change, the stampCount procedure would be called 2941 currency is
times. This number increases exponentially as the size of the problem in- illegal.
creases (it is O(3")). Because 2941 is greater than 70—the number of distinct Making change
subproblems—some subproblems are recomputed many times. For example, 70t
the 2 cent problem must be re-solved by every larger problem.
To reduce the number of calls, we can incorporate an array into the method.
Each location n of the array stores either 0 or the answer to the problem of size
n. If, when looking for an answer, the entry is 0, we invest time in computing the
answer and cache it in the array for future use. This technique is called dynamic
programming and yields an efficient linear algorithm. Here is our modified FullPostage

solution:

100

Design Fundamentals

public static final int LETTER = 41; // letter rate
public static final int CARD = 26; // post card rate
public static final int PENNY = 1; // penny stamp

public static int stampCount(int amount)

// pre: amount >= 0

// post: return *number* of stamps needed to make change
// (only use letter, post card, and penny stamps)
{

return stampCount (amount, new int[amount+1]);

protected static int stampCount(int amount, int answer[])
// pre: amount >= 0; answer array has length >= amount
// post: return *number* of stamps needed to make change
// (only use letter, post card, and penny stamps)
{
int minStamps;
Assert.pre(amount >= 0,"Reasonable amount of change.");
if (amount == 0) return 0;
if (answer[amount] !'= 0) return answer[amount];
// consider use of a penny stamp
minStamps = l+stampCount (amount-1,answer);
// consider use of a post card stamp
if (amount >= CARD) {
int possible = 1+stampCount (amount-CARD,answer) ;
if (minStamps > possible) minStamps = possible;
}
// consider use of a letter stamp
if (amount >= LETTER) {
int possible = 1+stampCount (amount-LETTER,answer) ;
if (minStamps > possible) minStamps = possible;
}
answer [amount] = minStamps;
return minStamps;

When we call the method for the first time, we allocate an array of sufficient
size (amount+1 because arrays are indexed beginning at zero) and pass it as
answer in the protected two-parameter version of the method. If the answer
is not found in the array, it is computed using up to three recursive calls that
pass the array of previously computed answers. Just before returning, the newly
computed answer is placed in the appropriate slot. In this way, when solutions
are sought for this problem again, they can be retrieved without the overhead
of redundant computation.

When we seek the solution to the 70 cent problem, 146 calls are made to the
procedure. Only a few of these get past the first few statements to potentially
make recursive calls. The combination of the power recursion and the efficiency
of dynamic programming yields elegant solutions to many seemingly difficult

5.2 Self-Reference

101

problems.

Exercise 5.5 Explain why the dynamic programming approach to the problem
runs in linear time.

In the next section, we consider induction, a recursive proof technique. In-
duction is as elegant a means of proving theorems as recursion is for writing
programs.

5.2.2 Mathematical Induction

The accurate analysis of data structures often requires mathematical proof. An
effective proof technique that designers may apply to many computer science
problems is mathematical induction. The technique is, essentially, the construc-
tion of a recursive proof. Just as we can solve some problems elegantly using
recursion, some properties may be elegantly verified using induction.

A common template for proving statements by mathematical induction is as
follows:

1. Begin your proof with “We will prove this using induction on the size of
the problem.” This informs the reader of your approach.

2. Directly prove whatever base cases are necessary. Strive, whenever possi-
ble to keep the number of cases small and the proofs as simple as possible.

3. State the assumption that the observation holds for all values from the
base case, up to but not including the nth case. Sometimes this assump-
tion can be relaxed in simple inductive proofs.

4. Prove, from simpler cases, that the nth case also holds.

5. Claim that, by mathematical induction on n, the observation is true for all
cases more complex than the base case.

Individual proofs, of course, can deviate from this pattern, but most follow the
given outline.

As an initial example, we construct a formula for computing the sum of
integers between 0 and n > 0 inclusively. Recall that this result was used in
Section when we considered the cost of extending Vectors, and earlier, in
Section [5.1.2] when we analyzed buildVector2. Proof of this statement also
yields a constant-time method for implementing sum3.

. n . n(n+1
Observation 5.1 > " i = %

Proof: We prove this by induction. First, consider the simplest case, or base case.
If n = 0, then the sum is 0. The formula gives us % = 0. The observation
appears to hold for the base case.

Now, suppose we know—for some reason—that our closed-form formula
holds for all values between 0 (our base case) and n — 1. This knowledge may

102

Design Fundamentals

99 cases left to
prove! Take one
down, pass it
around, 98
cases left to
prove! . ..

Recursion

help us solve a more complex problem, namely, the sum of integers between 0
and n. The sum

0+14+24---+(n—-1)+n
conveniently contains the sum of the first n — 1 integers, so we rewrite it as
O+1+24-+(n—-1)]+n

Because we have assumed that the sum of the natural numbers to n — 1 can be
computed by the formula, we may rewrite the sum as

-1
[(n ')n} .
The terms of this expression may be simplified and reorganized:

(n—1)n+2n n(n+1)
2 2

Thus given only the knowledge that the formula worked for n — 1, we have
been able to extend it to n. It is not hard to convince yourself, then, that the
observation holds for any nonnegative value of n. Our base case was for n = 0,
so it must hold as well for n = 1. Since it holds for n = 1, it must hold for
n = 2. In fact, it holds for any value of n > 0 by simply proving it holds for
values 0,1,2,...,n — 1 and then observing it can be extended to n.c

The induction can be viewed as a recursively constructed proof (consider
Figure [5.6). Suppose we wish to see if our observation holds for n = 100. Our
method requires us to show it holds for n = 99. Given that, it is a simple matter
to extend the result to 100. Proving the result for n = 99, however, is almostE]
as difficult as it is for n = 100. We need to prove it for n = 98, and extend
that result. This process of developing the proof for 100 eventually unravels
into a recursive construction of a (very long) proof that demonstrates that the
observation holds for values 0 through 99, and then 100.

The whole process, like recursion, depends critically on the proof of appro-
priate base cases. In our proof of Observation for example, we proved that
the observation held for n = 0. If we do not prove this simple case, then our
recursive construction of the proof for any value of n > 0 does not terminate:
when we try to prove it holds for n = 0, we have no base case, and therefore
must prove it holds for n = —1, and in proving that, we prove that it holds for
—2,-3, ..., ad infinitum. The proof construction never terminates!

Our next example of proof by induction is a correctness proof. Our intent is
to show that a piece of code runs as advertised. In this case, we reinvestigate
sum3 from page

2 It is important, of course, to base your inductive step on simpler problems—problems that take
you closer to your base case. If you avoid basing it on simpler cases, then the recursive proof will
never be completely constructed, and the induction will fail.

5.2 Self-Reference

103

Proof for 100:
* |t works for 99,
* Extend to 100.
QED.

[
Proof for 99:
* |t works for 98.
* Extend to 99.

Q.E.D.> i

Proof for 98:
* [t worksfor 97. a
* Extend to 98.

Q.E.D.\

Proof for 0:
* Trivial proof.
Q.E.D.

Figure 5.6 The process of proof by induction simulates the recursive construction of a
proof. Compare with Figure

public static int sum3(int n)
// pre: n >= 0
// post: compute the sum of 0..n

{
if (n < 1) return O; // 1
else return // 2
sum3 (// 3
n-1 // 4
) +n; // 5

}

(The code has been reformatted to allow discussion of portions of the computa-
tion.) As with our mathematical proofs, we state our result formally:

Observation 5.2 Given that n > 0, the method sum3 computes the sum of the
integers O through n, inclusive.

Proof: Our proof is by induction, based on the parameter n. First, consider the
action of sum3 when it is passed the parameter 0. The if statement of line 1 is
true, and the program returns O, the desired result.

We now consider n>0 and assume that the method computes the correct
result for all values less that n. We extend our proof of correctness to the pa-
rameter value of n. Since n is greater than 0, the if of line 1 fails, and the else
beginning on line 2 is considered. On line 4, the parameter is decremented,
and on line 3, the recursion takes place. By our assumption, this recursive

104

Design Fundamentals

Warning: bad
proof!

n-1 others

Figure 5.7 A group of n computer scientists composed of Alice and n — 1 others.

call returns the correct result—the sum of values between 0 and n-1, inclusive.
Line 5 adds in the final value, and the entire result is returned. The program
works correctly for a parameter n greater than 0. By induction on n, the method
computes the correct result for all n>=0.¢

Proofs of correctness are important steps in the process of verifying that code
works as desired. Clearly, since induction and recursion have similar forms, the
application of inductive proof techniques to recursive methods often leads to
straightforward proofs. Even when iteration is used, however, induction can be
used to demonstrate assumptions made about loops, no matter the number of
iterations.

We state here an important result that gives us a closed-form expression for
computing the sum of powers of 2.

Observation 5.3) " 2/ =27+l — 1.
Exercise 5.6 Prove Observation[5.3]

There are, of course, ways that the inductive proof can go awry. Not proving
the appropriate base cases is the most common mistake and can lead to some
interesting results. Here we prove what few have suspected all along:

Observation 5.4 All computer scientists are good programmers.

Proof: We prove the observation is true, using mathematical induction. First,
we use traditional techniques (examinations, etc.) to demonstrate that Alice is
a good programmer.

Now, assume that our observation is true of any group of fewer than n com-
puter scientists. Let’s extend our result: select n computer scientists, including
Alice (see Figure[5.7). Clearly, the subgroup consisting of all computer scien-
tists that are “not Alice” is a group of n — 1 computer scientists. Our assumption
states that this group of n — 1 computer scientists is made up of good program-
mers. So Alice and all the other computer scientists are good programmers.
By induction on n, we have demonstrated that all computer scientists are good
programmers.o

5.2 Self-Reference

105

<)
%
200

o)
25

%
o
Sotetesss

TR
X OSPRIRIAN
RS,
st
e
QR
o olsts
oo olsts
e
Br%te
5030
i
s
AR
SRR
e
atatetete!
ety
eresetety
olotoretels;
hetetels
s
=%
=%
2B
RIS
SRR
FEEitetetets
K%
istetetetsts
2 b
Y
)
oS00k > <
250k)
5 S Ses
oSS s
L
atotetat:

Lol
00
EAH 00
o0
St

B
ha%ete%s

2%

S
oA

I
st
SRS
o

el

foe

siee

ids

0N
Sesersteserty)
Saestatetetetetaseres
olotateretatetet
:
=
s
o®e%
pladisses
Sieteeiegs
e
%
ottt
e,
o

Carol

e
A
7
£
8
58
%
e
st
*#N%%§$
23
e
%
Satetet

e NN
B e I R P i
D
T R A
s
S 5

o 2e%e% % % %
£, 000760 % % % b
R

Figure 5.8 A group of n computer scientists, including Alice, Bob, and Carol.

This is a very interesting result, especially since it is not true. (Among other
things, some computer scientists do not program computers!) How, then, were
we successful in proving it? If you look carefully, our base case is Alice. The
assumption, on the other hand, is based on any group of n — 1 programmers.
Unfortunately, since our only solid proof of quality programming is Alice, and
non-Alice programmers cannot be reduced to cases involving Alice, our proof is
fatally flawed.

Still, a slight reworking of the logic might make the proof of this observa-
tion possible. Since Alice is a computer scientist, we can attempt to prove the
observation by induction on groups of computer scientists that include Alice:

Proof: We prove the observation by induction. First, as our base case, consider
Alice. Alice is well known for being a good programmer. Now, assume that for
any group of fewer than n computer scientists that includes Alice, the members
are excellent programmers. Take n computer scientists, including Alice (see
Figure [5.8). Select a non-Alice programmer. Call him Bob. If we consider all
non-Bob computer scientists, we have a group of n — 1 computer scientists—
including Alice. By our assumption, they must all be good. What about Bob?
Select another non-Alice, non-Bob computer scientist from the group of n. Call
her Carol. Carol must be a good programmer, because she was a member of the
n — 1 non-Bob programmers. If we consider the n — 1 non-Carol programmers,
the group includes both Alice and Bob. Because it includes Alice, the non-
Carol programmers must all be good. Since Carol is a good programmer, then
all n must program well. By induction on n, all groups of computer scientists
that include Alice must be good programmers. Since the group of all computer
scientists is finite, and it includes Alice, the entire population must program
well. The observation holds!e

This proof looks pretty solid—until you consider that in order for it to work,
you must be able to distinguish between Alice, Bob, and Carol. There are three
people. The proof of the three-person case depends directly on the observation
holding for just two people. But we have not considered the two-person case!
In fact, that is the hole in the argument. If we know of a bad programmer, Ted,
we can say nothing about the group consisting of Alice and Ted (see Figure[5.9).

Warning: bad
proof, take 2!

106

Design Fundamentals

Lesson:

it’s hard to find
good
programmers.

Ted
Alice

Figure 5.9 The proof does not hold for the simplest nontrivial case: Alice and any bad
programmer.

As a result, we have a worrisome hole in the proof of the group consisting of
Alice, Bob, and Ted. In the end, the attempt at a complete proof unravels.

What have we learned from this discussion? For an inductive proof, the base
cases must be carefully enumerated and proved. When proving the inductive
step, the step must be made upon a proved foundation. If not, the entire state-
ment collapses. The subtlety of this difficulty should put us on alert: even the
most thoughtful proofs can go awry if the base case is not well considered.

We can now make a similar statement about recursion: it is important to
identify and correctly code the base cases you need. If you don’t, you run the
risk that your method will fail to stop or will compute the wrong answer. One
of the most difficult debugging situations occurs when multiple base cases are
to be considered and only a few are actually programmed.

Our final investigation considers the implementation of a Java method to
compute the following sequence of values:

0,1,1,2,3,5,8,13,21,. ..

These values are the first of the sequence of Fibonacci numbers. Each value is
the sum of the two values that fall before it. We should be careful—especially
given our last discussion—that we have the base cases carefully considered. In
this particular case, we must specify two initial values: 0 and 1.

This sequence may be familiar to you. If it is, you may have seen the defini-
tion of F),, the nth value of the sequence as

Fo— n n=0orn=1
"l B+ F,_1 n>1

The translation of this type of equation into Java is fairly straightforward. We
make the following attempt:

static public int fibo(int n)

// pre: n is a nonnegative integer

// post: result is the ith term from the sequence
// o, 1,1, 2,3, 5,8, 13, 21, 34,

5.2 Self-Reference

107

{
Assert.pre(n >= 0, "Index is nonnegative.");
// when n < 2, return n
if (n == 0) return 0; // line 1
else if (n == 1) return 1; // line 2
// complex, self-referential case:
else return fibo(n-2)+fibo(n-1); // line 3
}

We now seek to prove that the recursive method computes and returns the nth
member of the sequence.

Proof: First, suppose n = 0: the method returns 0, on line 1. Next, suppose
that n = 1: the method returns 1, on line 2. So, for the two very simplest
cases, the method computes the correct values. Now, suppose that n > 1, and
furthermore, assume that fibo returns the correct value for all terms with index
less than n. Since n > 1, lines 1 and 2 have no effect. Instead, the method
resorts to using line 3 to compute the value. Since the method works for all
values less than n, it specifically computes the two previous terms—F;,_» and
F,,_1——correctly. The sum of these two values (F,,) is therefore computed and
immediately returned on line 3. We have, then, by mathematical induction on
n proved that fibo(n) computes F,, for all n > 0.0

Another approach to computing Fibonacci numbers, of course, would be to
use an iterative method:

static public int fibo2(int n)
// pre: n is a nonnegative integer
// post: result is the ith term from the sequence
// o, 1,1, 2, 3, 5, 8, 13, 21, 34,
{
Assert.pre(n >= 0, "Index is nonnegative.");
int a = 0;

int b = 1;
if (n == 0) return a; // line 1
if (n == 1) return b; // line 2
// for large values of n, iteratively compute sequence
int i=2,F;
do
{
// Assertion: b is the i-1st member of the sequence
// a is the i-2nd member
F=a+b; // line 3

// Assertion: F is the ith member
// update previous two values:

a = b; // line 4
b = F; // line 5
i++; // line 6
} while (i <= n); // line 7
return F; // line 8

108

Design Fundamentals

To demonstrate that such a program works, we perform a step-wise analysis of
the method as it computes F,.

Proof: Suppose n = 0. The condition in the if statement on line 1 is true and
the value a (0) is returned. If n = 1, the condition on line 1 is false, but the
if statement on line 2 is true and b (1) is returned. In both of these cases the
correct value is returned.

We now investigate the loop. We notice that when the loop starts (it is a do
loop, it must execute at least once if n > 1), a and b contain the values F, and
F1, and i is 2. Thus, the loop invariant before line 3 holds on the first iteration.

Now, assume that ; > 2 and the loop invariant before line 3 holds. The
effect of line 3 is to compute F; from F;_; and F;_». The result is placed in F,
and the loop invariant after line 3 is met. The remaining statements, on lines 4
through 6 result in F;_, in a and F;_; in b. If the condition on line 7 should be
true, we meet the loop invariant for the next iteration.

If the condition on line 7 should be false, then we note that this value of i is
the first that is greater than n, so F' = F;_; = F},, and the result returned is the
correct result. ¢

It is interesting to note that the initial values of the sequence are rather arbi-
trary, and that different natural phenomena related to Fibonacci numbers can
be modeled by sequences that begin with different initial values.

5.3 Properties of Design

This section is dedicated to two informal properties of design that are referenced
elsewhere within this text. The property of symmetry describes the predictability
of a design, while friction describes the difficulty of moving a data structure from
one state to another. Both terms extend the vocabulary of implementors when
discussing design decisions.

5.3.1 Symmetry

For the most part, our instruction of computers occurs through programs. As
a result, programs can be nonintuitive and hard to understand if they are not
designed with human-readability in mind. On the other hand, a well-designed
program can be used by a novice without a significant learning curve. Systems
that are easy to use tend to survive longer.

The programmer, as a designer of a data structure, is responsible for deliv-
ering a usable implementation of an abstract data structure. For an implemen-
tation to be usable, it should provide access to the structure with methods that
are predictable and easy to use. The notion of predictability is particularly dif-
ficult for designers of data structures to understand, and it is something often
overlooked by novice programmers.

When designing a system (here, a program or data structure) a useful princi-
ple is to make its interface symmetric. What is symmetry? Symmetry allows one

5.3 Properties of Design

109

to view a system from different points of view and see similarities. Mathemati-
cians would say that a system exhibits a symmetry if “it looks like itself under
a nontrivial transformation.” Given this, programmers consider asymmetries in
transformed programs to be early warning signs of errors in logic.

Consider the following method (you will see this as part of the swap proce-
dure of page[120). It exchanges two object references—datal[i] and data[j].

int temp;

temp = datal[il;
datal[i] = datalj]l;
datal[j] = temp;

Close inspection of this code demonstrates that it does what it claims to do.
Even if we stand back, not thinking so much about the actual workings of the
code, we can see that the code is pretty symmetric. For example, if we squint
our eyes and look at the code from the standpoint of variable data[i], we see
it as:

. = datalil;
datali] = ...;

Here, data[i] is assigned to a variable, and a value is assigned to data[i]. We
see a similar pattern with datal[j]:

. = dataljl;
datalj]l = ...;

While this is not direct proof that the code works, it is an indication that the
code is, in some way, “symmetric,” and that helps make the argument that it is
well designed.

Not everything we do is symmetric. If we consider the Association class,
for example, the key and value components of the Association are different.
The value, of course, has two associated methods, getValue and setValue.
The first of the methods reads and returns a value, while the second method
consumes and sets a value. Everything is in balance, and so we are hopeful that
the design of the structure is correct. On the other hand, the key can only be
read: while there is a getKey method, there is no setKey. We have suggested
good reasons for doing this. As long as you can make a good argument for
asymmetry in design, the breaking of symmetry can be useful. Unreasoned
asymmetry, however, is a sign of poor and unpredictable design.

Here are various ways that one can look at a system to evaluate it for sym-
metry:

1. Compare methods that extend the structure with methods that trim the
structure. Do they have similar approaches? Are they similar in number?

2. Consider methods that read and write values. Can the input methods read
what is written by the output methods? Can the writing methods write all
values that can be read?

110

Design Fundamentals

Should # will.

3. Are procedures that consume parameters matched by functions that de-
liver values?

4. Can points of potential garbage collection be equally balanced by new in-
vocations?

5. In linked structures, does unlinking a value from the structure appear to
be the reverse of linking a new value into the structure?

When asymmetries are found, it is important to consider why they occur. Argu-
ments such as “I can’t imagine that anyone would need an opposite method!”
are usually unconvincing. Many methods are added to the structures, not be-
cause they are obviously necessary, but because there is no good argument
against them. Sometimes, of course, the language or underlying system forces
an asymmetry. In Java, for example, every Object has a toString method that
converts an internal representation of an object to a human-readable form, but
there’s no fromString required method that reads the value of an Object from
a String. There should be, but there isn’t.

5.3.2 Friction

One of the obvious benefits of a data structure is that it provides a means of
storing information. The ease with which the structure accepts and provides in-
formation about its contents can often be determined by its interface. Likewise,
the difficulty of moving a data structure from one state to another determines,
in some way, its “stiffness” or the amount of friction the structure provides when
the state of the structure is to be modified.

One way that we might measure friction is to determine a sequence of logical
states for the structure, and then determine the number of operations that are
necessary to move the structure from each state to the next. If the number
of operations is high, we imagine a certain degree of friction; if the operation
count is low, the structure moves forward with relative ease.

Often we see that the less space provided to the structure, the more friction
appears to be inherent in its structure. This friction can be good—it may make
it less possible to get our structure into states that are inconsistent with the
definition of the structure, or it may be bad—it may make it difficult to get
something done.

5.4 Conclusions

Several formal concepts play an important role in modern data structure des-
ign—the use of big-O analysis to support claims of efficiency, the use of recur-
sion to develop concise but powerful structures, and the use of induction to
prove statements made about both data structures and algorithms. Mastery of
these concepts improves one’s approach to solving problems of data structure
design.

5.4 Conclusions

111

The purpose of big-O analysis is to demonstrate upper bounds on the growth
of functions that describe behavior of the structures we use. Since these are
upper bounds, the tightest bounds provide the most information. Still, it is
often not very difficult to identify the fastest-growing component of a function—
analysis of that component is likely to lead to fairly tight bounds and useful
results.

Self-reference is a powerful concept. When used to develop methods, we call
this recursion. Recursion allows us to break down large problems into smaller
problems whose solutions can be brought together to solve the original prob-
lem. Interestingly, recursion is often a suitable substitute for loops as a means of
progressing through the problem solution, but compilers can often convert tail
recursive code back into loops, for better performance. All terminating recur-
sive methods involve at least one test that distinguishes the base case from the
recursive, and every recursive program must eventually make progress toward
a base case to construct a solution.

Mathematical induction provides a means of recursively generating proofs.
Perhaps more than most other proof mechanisms, mathematical induction is
a useful method for demonstrating a bound on a function, or the correct ter-
mination of a method. Since computers are not (yet) able to verify everyday
inductive proofs, it is important that they be constructed with appropriate care.
Knowing how to correctly base induction on special cases can be tricky and, as
we have recently seen, difficult to verify.

In all these areas, practice makes perfect.

Self Check Problems

Solutions to these problems begin on page 444

5.1 Suppose f(z) = x. What is its best growth rate, in big-O notation?
5.2 Suppose f(x) = 3z. What is its growth rate?

5.3 What is the growth rate of f(z) = = + 900?

5.4 How fast does f(x) grow if f(x) = z for odd integers and f(x) = 900
for even integers?

5.5 Evaluate and order the functions log, z, v/, z, 30z, 22, 2%, and 2! at
x = 2, 4, 16, and 64. For each value of x, which is largest?

5.6 What are three features of recursive programs?

5.7 The latest Harry Potter book may be read by as much as 75 percent of
the reading child population in the United States. Approximately how many
child-years of reading time does this represent?

5.8 Given an infinite supply of 37 cent stamps, 21 cent stamps, and penny
stamps a postmaster returns a minimum number of stamps composed of c37(z),
co1(x), and ¢ (z) stamps for = dollars in change. What are the growth rates of
these functions?

112

Design Fundamentals

Problems

Solutions to the odd-numbered problems begin on page [462

5.1 What is the time complexity associated with accessing a single value in
an array? The Vector class is clearly more complex than the array. What is the
time complexity of accessing an element with the get method?

5.2 What is the worst-case time complexity of the index-based remove code
in the Vector class? What is the best-case time complexity? (You may assume
the Vector does not get resized during this operation.)

5.3 What is the running time of the following method?

public static int reduce(int n)

{
int result = 0;
while (n > 1)
{
n = n/2;
result = result+l;
}
return result;
}

5.4 What is the time complexity of determining the length of an n-character

null-terminated string? What is the time complexity of determining the length

of an n-character counted string?

5.5 What is the running time of the following matrix multiplication method?
// square matrix multiplication

// ml, m2, and result are n by n arrays
for (int row = 0; row < n; row++)

{
for (int col = 0; col < n; col++)
{
int sum = 0;
for (int entry = 0; entry < n; entry++)
{
sum = sum + ml[row] [entry]*m2[entry] [coll;
}
result[row] [col] = sum;
}
}
5.6 In Definition [5.1| we see what it means for a function to be an upper

bound. An alternative definition provides a lower bound for a function:

Definition 5.2 A function f(n) is Q(g(n)) (read “big-omega of g” or “at least
order g”), if and only if there exist two positive constants, ¢ and ng, such that

f(n) = c-g(n)

for all n > ny.

5.4 Conclusions

113

What is a lower bound on the time it takes to remove a value from a Vector by
index?

5.7 What is a lower bound on adding a value to the end of a Vector? Does
it matter that sometimes we may have to spend time doubling the size of the
underlying array?

5.8 When discussing symmetry, we investigated a procedure that swapped
two values within an array. Is it possible to write a routine that swaps two
integer values? If so, provide the code; if not, indicate why.

5.9 For subtle reasons String objects cannot be modified. Instead, Strings
are used as parameters to functions that build new Strings. Suppose that a is
an n-character String. What is the time complexity of performing a=a+"!"?

5.10 Read Problem[5.9] Suppose that a and b are n-character Strings. What
is the complexity of performing a=a+b?

5.11 What is the rate of growth (using big-O analysis) of the function f(n) =
n + log n? Justify your answer.

5.12 In this text, logarithms are assumed to be in base 2. Does it make a
difference, from a complexity viewpoint?

5.13 What is the rate of growth of the function 1 + 12? Justify your answer.
5.14 What is the rate of growth of the function S22? Justify your answer.
5.15 Trick question: What is the rate of growth of tann?

5.16 Suppose n integers between 1 and 366 are presented as input, and you
want to know if there are any duplicates. How would you solve this problem?

What is the rate of growth of the function 7'(n), describing the time it takes for
you to determine if there are duplicates? (Hint: Pick an appropriate ng.)

5.17 The first element of a Syracuse sequence is a positive integer so. The
value s; (for i > 0) is defined to be s;_1/2 if s;_; is even, or 3s;,_1 + 1 if s;_
is odd. The sequence is finished when a 1 is encountered. Write a procedure to
print the Syracuse sequence for any integer sq. (It is not immediately obvious
that this method should always terminate.)

5.18 Rewrite the sqrt function of Section|2.1|as a recursive procedure.

5.19 Write a recursive procedure to draw a line segment between (xg, yo)
and (z1,y1) on a screen of pixels with integer coordinates. (Hint: The pixel
closest to the midpoint is not far off the line segment.)

5.20 Rewrite the reduce method of Problem[5.3] as a recursive method.

5.21 One day you notice that integer multiplication no longer works. Write
a recursive procedure to multiply two values a and b using only addition. What
is the complexity of this function?

5.22 Modify the “stamp change” problem of Section to report the num-
ber of each type of stamp to be found in the minimum stamp change.

5.23 Prove that 5" — 4n — 1 is divisible by 16 for all n > 0.
5.24 Prove Observation|[5.3} that Y. 2¢ = 271 — 1 for n > 0.

114

Design Fundamentals

5.25 Prove that a function n° is O(n?) for any d > c.

5.26 Provethat) ! 2i =n(n+1).

5.27 Provethat), (2i — 1) = n?.

5.28 Show that forc >2andn >0, Y ,c' = SH(e=2)

c—1
5.29 Prove that >, logi < nlogn.

5.30 Some artists seek asymmetry. Physicists tell us the universe doesn’t
always appear symmetric. Why are we unfazed?

5.31 With a colleague, implement a fresh version of Lists. First, agree on
the types and names of private fields. Then, going down the list of methods
required by the List interface, split methods to be implemented between you
by assigning every other method to your colleague. Bring the code together
and compile it. What types of bugs occur? Did you depend on your colleague’s
code?

5.32 Consider the implementation of a Ratio data type. How does symmetry
appear in this implementation?

5.33 In the Vector class, we extend by doubling, but we never discuss re-
ducing by a similar technique. What is a good strategy?

5.34 Consider the following Java method:

static public int fido(int n)
// pre: n is a positive integer
// post: result is the nth term from the sequence
// 1, 3, 7, 15, 31, 63, 127,
{
int result = 1;
if (n > 1) result = 1+fido(n-1)+fido(n-1);
// assertion: the above if condition was tested
// fido(n) times while computing result
return result;

}
a. What does it compute?
b. Prove or disprove the informal assertion following the if statement.
c. What is the time complexity of the method?

d. Why is fido an appropriate name for this method?

5.5 Laboratory: How Fast Is Java?

Objective. To develop an appreciation for the speed of basic Java operations
including assignment of value to variables, arrays, and Vectors.

Discussion. How long does it take to add two integers in Java? How long does
it take to assign a value to an entry in an array? The answers to these questions
depend heavily on the type of environment a programmer is using and yet play
an important role in evaluating the trade-offs in performance between different
implementations of data structures.

If we are interested in estimating the time associated with an operation,
it is difficult to measure it accurately with clocks available on most modern
machines. If an operation takes 100 ns (nanoseconds, or billionths of a second),
10,000 of these operations can be performed within a single millisecond clock
tick. It is unlikely that we would see a change in the millisecond clock while the
operation is being performed.

One approach is to measure, say, the time it takes to perform a million of
these operations, and divide that portion of the time associated with the opera-
tion by a million. The result can be a very accurate measurement of the time it
takes to perform the operation. Several important things must be kept in mind:

¢ Different runs of the experiment can generate different times. This vari-
ation is unlikely to be due to significant differences in the speed of the
operation, but instead to various interruptions that regularly occur when
a program is running. Instead of computing the average of the running
times, it is best to compute the minimum of the experiment’s elapsed
times. It’s unlikely that this is much of an underestimate!

e Never perform input or output while you are timing an experiment. These
operations are very expensive and variable. When reading or writing,
make sure these operations appear before or after the experiment being
timed.

e On modern systems there are many things happening concurrently with
your program. Clocks tick forward, printer queues manage printers, net-
work cards are accepting viruses. If you can keep your total experiment
time below, say, a tenth of a second, it is likely that you will eliminate
many of these distractions.

e The process of repeating an operation takes time. One of our tasks will be
to measure the time it takes to execute an empty for loop. The loop, of
course, is not really empty: it performs a test at the top of the loop and an
increment at the bottom. Failing to account for the overhead of a for loop
makes it impossible to measure any operation that is significantly faster.

e Good compilers can recognize certain operations that can be performed
more efficiently in a different way. For example, traditional computers

116

Design Fundamentals

can assign a value of 0 much faster than the assignment of a value of 42.
If an experiment yields an unexpectedly short operation time, change the
Java to obscure any easy optimizations that may be performed. Don’t
forget to subtract the overhead of these obscuring operations!

Keeping a mindful eye on your experimental data will allow you to effectively
measure very, very short events accurate to nanoseconds. In one nanosecond,
light travels 11.80 inches!

Procedure. The ultimate goal of this experiment is a formally written lab report
presenting your results. Carefully design your experiment, and be prepared to
defend your approach. The data you collect here is experimental, and necessar-
ily involves error. To reduce the errors described above, perform multiple runs
of each experiment, and carefully document your findings. Your report should
include results from the following experiments:

1. A description of the machine you are using. Make sure you use this ma-
chine for all of your experiments.

2. Write a short program to measure the time that elapses, say, when an
empty for loop counts to one million. Print out the elapsed time, as well
as the per-iteration elapsed time. Adjust the number of loops so that the
total elapsed time falls between, say, one-hundredth and one-tenth of a
second.

Recall that we can measure times in nanoseconds (as accurately as possi-
ble, given your machine) using System.nanoTime():

int i, loops;

double speed;

loops = 10000000;

long start,stop,duration;

start = System.nanoTime();
for (1 = 0; i < loops; it++)
{
// code to be timed goes here
}

stop = System.nanoTime();

duration = stop-start;

System.out.println("# Elapsed time: "+duration+"ns");

System.out.println("# Mean time: "+
(((double)duration) /loops)+
"nanoseconds") ;

3. Measure the time it takes to do a single integer assignment (e.g., i=42;).
Do not forget to subtract the time associated with executing the for loop.

4. Measure the time it takes to assign an integer to an array entry. Make sure
that the array has been allocated before starting the timing loop.

5.5 Laboratory: How Fast Is Java?

117

5. Measure the time it takes to assign a String reference to an array.

6. Measure the length of time it takes to assign a String to a Vector. (Note
that it is not possible to directly assign an int to a Vector class.)

7. Copy one Vector to another, manually, using set. Carefully watch the
elapsed time and do not include the time it takes to construct the two
Vectors! Measure the time it takes to perform the copy for Vectors of
different lengths. Does this appear to grow linearly?

Formally present your results in a write-up of your experiments.
Thought Questions. Consider the following questions as you complete the lab:

1. Your Java compiler and environment may have several switches that affect
the performance of your program. For example, some environments allow
the use of just-in-time (jit) compilers, that compile frequently used pieces
of code (like your timing loop) into machine-specific instructions that are
likely to execute faster. How does this affect your experiment?

2. How might you automatically guarantee that your total experiment time
lasts between, say, 10 and 100 milliseconds?

3. It is, of course, possible for a timer to underestimate the running time of
an instruction. For example, if you time a single assignment, it is certainly
possible to get an elapsed time of O—an impossibility. To what extent
would a timing underestimate affect your results?

Notes:

